L-spectral Multipliers for the Hodge Laplacian Acting on 1-forms on the Heisenberg Group

نویسندگان

  • Detlef Müller
  • Marco M. Peloso
  • Fulvio Ricci
  • F. RICCI
چکیده

Abstract. We prove that, if ∆1 is the Hodge Laplacian acting on differential 1forms on the (2n+1)-dimensional Heisenberg group, and if m is a Mihlin-Hörmander multiplier on the positive half-line, with L-order of smoothness greater than n+ 1 2 , then m(∆1) is L-bounded for 1 < p < ∞. Our approach leads to an explicit description of the spectral decomposition of ∆1 on the space of L-forms in terms of the spectral analysis of the sub-Laplacian L and the central derivative T , acting on scalar-valued functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Gaussian estimate for the heat kernel on differential forms and application to the Riesz transform

Let (M, g) be a complete Riemannian manifold which satisfies a Sobolev inequality of dimension n, and on which the volume growth is comparable to the one of R for big balls; if there is no non-zero L harmonic 1-form, and the Ricci tensor is in L n 2 −ε ∩ L∞ for an ε > 0, then we prove a Gaussian estimate on the heat kernel of the Hodge Laplacian acting on 1-forms. This allows us to prove that, ...

متن کامل

THE LAPLACIAN ON p-FORMS ON THE HEISENBERG GROUP

The Novikov-Shubin invariants for a non-compact Riemannian manifold M can be defined in terms of the large time decay of the heat operator of the Laplacian on L p-forms, △p, on M . For the (2n + 1)-dimensional Heisenberg group H2n+1, the Laplacian △p can be decomposed into operators△p,n(k) in unitary representations β̄k which, when restricted to the centre of H, are characters (mapping ω to exp(...

متن کامل

Translation invariant surfaces in the 3-dimensional Heisenberg‎ ‎group

‎In this paper‎, ‎we study translation invariant surfaces in the‎ ‎3-dimensional Heisenberg group $rm Nil_3$‎. ‎In particular‎, ‎we‎ ‎completely classify translation invariant surfaces in $rm Nil_3$‎ ‎whose position vector $x$ satisfies the equation $Delta x = Ax$‎, ‎where $Delta$ is the Laplacian operator of the surface and $A$‎ ‎is a $3 times 3$-real matrix‎.

متن کامل

Partial Data Inverse Problems for the Hodge Laplacian

We prove uniqueness results for a Calderón type inverse problem for the Hodge Laplacian acting on graded forms on certain manifolds in three dimensions. In particular, we show that partial measurements of the relative-to-absolute or absolute-to-relative boundary value maps uniquely determine a zeroth order potential. The method is based on Carleman estimates for the Hodge Laplacian with relativ...

متن کامل

Compensated Compactness for Differential Forms in Carnot Groups and Applications

In this paper we prove a compensated compactness theorem for differential forms of the intrinsic complex of a Carnot group. The proof relies on a L–Hodge decomposition for these forms. Because of the lack of homogeneity of the intrinsic exterior differential, Hodge decomposition is proved using the parametrix of a suitable 0order Laplacian on forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005